Photography is undoubtedly one of the most important inventions in history -- it has truly transformed how people conceive of the world. Now we can "see" all sorts of things that are actually many miles -- and years -- away from us. Photography lets us capture moments in time and preserve them for years to come.
The basic technology that makes all of this possible is fairly simple. A still film camera is made of three basic elements: an optical element (the lens), a chemical element (the film) and a mechanical element (the camera body itself). As we'll see, the only trick to photography is calibrating and combining these elements in such a way that they record a crisp, recognizable image.
There are many different ways of bringing everything together. In this article, we'll look at a manual single-lens-reflex (SLR) camera. This is a camera where the photographer sees exactly the same image that is exposed to the film and can adjust everything by turning dials and clicking buttons. Since it doesn't need any electricity to take a picture, a manual SLR camera provides an excellent illustration of the fundamental processes of photography.
The optical component of the camera is the lens. At its simplest, a lens is just a curved piece of glass or plastic. Its job is to take the beams of light bouncing off of an object and redirect them so they come together to form a real image -- an image that looks just like the scene in front of the lens.
But how can a piece of glass do this? The process is actually very simple. As light travels from one medium to another, it changes speed. Light travels more quickly through air than it does through glass, so a lens slows it down.
When light waves enter a piece of glass at an angle, one part of the wave will reach the glass before another and so will start slowing down first. This is something like pushing a shopping cart from pavement to grass, at an angle. The right wheel hits the grass first and so slows down while the left wheel is still on the pavement. Because the left wheel is briefly moving more quickly than the right wheel, the shopping cart turns to the right as it moves onto the grass.
The effect on light is the same -- as it enters the glass at an angle, it bends in one direction. It bends again when it exits the glass because parts of the light wave enter the air and speed up before other parts of the wave. In a standard converging, or convex lens, one or both sides of the glass curves out. This means rays of light passing through will bend toward the center of the lens on entry. In a double convex lens, such as a magnifying glass, the light will bend when it exits as well as when it enters.
This effectively reverses the path of light from an object. A light source -- say a candle -- emits light in all directions. The rays of light all start at the same point -- the candle's flame -- and then are constantly diverging. A converging lens takes those rays and redirects them so they are all converging back to one point. At the point where the rays converge, you get a real image of the candle. In the next couple of sections, we'll look at some of the variables that determine how this real image is formed.
We've seen that a real image is formed by light moving through a convex lens. The nature of this real image varies depending on how the light travels through the lens. This light path depends on two major factors:
As you can see, light beams from a closer point converge farther away from the lens than light beams from a point that's farther away. In other words, the real image of a closer object forms farther away from the lens than the real image from a more distant object.
You can observe this phenomenon with a simple experiment. Light a candle in the dark, and hold a magnifying glass between it and the wall. You will see an upside down image of the candle on the wall. If the real image of the candle does not fall directly on the wall, it will appear somewhat blurry. The light beams from a particular point don't quite converge at this point. To focus the image, move the magnifying glass closer or farther away from the candle.
This is what you're doing when you turn the lens of a camera to focus it -- you're moving it closer or farther away from the film surface. As you move the lens, you can line up the focused real image of an object so it falls directly on the film surface.
You now know that at any one point, a lens bends light beams to a certain total degree, no matter the light beam's angle of entry. This total "bending angle" is determined by the structure of the lens.
In the last section, we saw that at any one point, a lens bends light beams to a certain total degree, no matter the light beam's angle of entry. This total "bending angle" is determined by the structure of the lens.
A lens with a rounder shape (a center that extends out farther) will have a more acute bending angle. Basically, curving the lens out increases the distance between different points on the lens. This increases the amount of time that one part of the light wave is moving faster than another part, so the light makes a sharper turn.
Increasing the bending angle has an obvious effect. Light beams from a particular point will converge at a point closer to the lens. In a lens with a flatter shape, light beams will not turn as sharply. Consequently, the light beams will converge farther away from the lens. To put it another way, the focused real image forms farther away from the lens when the lens has a flatter surface.
Increasing the distance between the lens and the real image actually increases the total size of the real image. If you think about it, this makes perfect sense. Think of a projector: As you move the projector farther away from the screen, the image becomes larger. To put it simply, the light beams keep spreading apart as they travel toward the screen.
The same basic thing happens in a camera. As the distance between the lens and the real image increases, the light beams spread out more, forming a larger real image. But the size of the film stays constant. When you attach a very flat lens, it projects a large real image but the film is only exposed to the middle part of it. Basically, the lens zeroes in on the middle of the frame, magnifying a small section of the scene in front of you. A rounder lens produces a smaller real image, so the film surface sees a much wider area of the scene (at reduced magnification).
Professional cameras let you attach different lenses so you can see the scene at various magnifications. The magnification power of a lens is described by its focal length. In cameras, the focal length is defined as the distance between the lens and the real image of an object in the far distance (the moon for example). A higher focal length number indicates a greater image magnification.
Different lenses are suited to different situations. If you're taking a picture of a mountain range, you might want to use a telephoto lens, a lens with an especially long focal length. This lens lets you zero in on specific elements in the distance, so you can create tighter compositions. If you're taking a close-up portrait, you might use a wide-angle lens. This lens has a much shorter focal length, so it shrinks the scene in front of you. The entire face is exposed to the film even if the subject is only a foot away from the camera. A standard 50 mm camera lens doesn't significantly magnify or shrink the image, making it ideal for shooting objects that aren't especially close or far away.
The chemical component in a traditional camera is film. Essentially, when you expose film to a real image, it makes a chemical record of the pattern of light.
It does this with a collection of tiny light-sensitive grains, spread out in a chemical suspension on a strip of plastic. When exposed to light, the grains undergo a chemical reaction.
Once the roll is finished, the film is developed -- it is exposed to other chemicals, which react with the light-sensitive grains. In black and white film, the developer chemicals darken the grains that were exposed to light. This produces a negative, where lighter areas appear darker and darker areas appear lighter, which is then converted into a positive image in printing.
Color film has three different layers of light-sensitive materials, which respond, in turn, to red, green and blue. When the film is developed, these layers are exposed to chemicals that dye the layers of film. When you overlay the color information from all three layers, you get a full-color negative.
For an in-depth description of this entire process, check out How Photographic Film Works.
So far, we've looked at the basic idea of photography -- you create a real image with a converging lens, and you record the light pattern of this real image on a layer of light-sensitive material. Conceptually, this is all that's involved in taking a picture. But to capture a clear image, you have to carefully control how everything comes together.
Obviously, if you were to lay a piece of film on the ground and focus a real image onto it with a converging lens, you wouldn't get any kind of usable picture. Out in the open, every grain in the film would be completely exposed to light. And without any contrasting unexposed areas, there's no picture.
To capture an image, you have to keep the film in complete darkness until it's time to take the picture. Then, when you want to record an image, you let some light in. At its most basic level, this is all the body of a camera is -- a sealed box with a shutter that opens and closes between the lens and film. In fact, the term camera is shortened from camera obscura, literally "dark room" in Latin.
For the picture to come out right, you have to precisely control how much light hits the film. If you let too much light in, too many grains will react, and the picture will appear washed out. If you don't let enough light hit the film, too few grains will react, and the picture will be too dark. In the next section, we'll look at the different camera mechanisms that let you adjust the exposure.
The basic technology that makes all of this possible is fairly simple. A still film camera is made of three basic elements: an optical element (the lens), a chemical element (the film) and a mechanical element (the camera body itself). As we'll see, the only trick to photography is calibrating and combining these elements in such a way that they record a crisp, recognizable image.
There are many different ways of bringing everything together. In this article, we'll look at a manual single-lens-reflex (SLR) camera. This is a camera where the photographer sees exactly the same image that is exposed to the film and can adjust everything by turning dials and clicking buttons. Since it doesn't need any electricity to take a picture, a manual SLR camera provides an excellent illustration of the fundamental processes of photography.
The optical component of the camera is the lens. At its simplest, a lens is just a curved piece of glass or plastic. Its job is to take the beams of light bouncing off of an object and redirect them so they come together to form a real image -- an image that looks just like the scene in front of the lens.
But how can a piece of glass do this? The process is actually very simple. As light travels from one medium to another, it changes speed. Light travels more quickly through air than it does through glass, so a lens slows it down.
When light waves enter a piece of glass at an angle, one part of the wave will reach the glass before another and so will start slowing down first. This is something like pushing a shopping cart from pavement to grass, at an angle. The right wheel hits the grass first and so slows down while the left wheel is still on the pavement. Because the left wheel is briefly moving more quickly than the right wheel, the shopping cart turns to the right as it moves onto the grass.
|
|
Cameras: Focus
- The angle of the light beam's entry into the lens
- The structure of the lens
|
You can observe this phenomenon with a simple experiment. Light a candle in the dark, and hold a magnifying glass between it and the wall. You will see an upside down image of the candle on the wall. If the real image of the candle does not fall directly on the wall, it will appear somewhat blurry. The light beams from a particular point don't quite converge at this point. To focus the image, move the magnifying glass closer or farther away from the candle.
|
You now know that at any one point, a lens bends light beams to a certain total degree, no matter the light beam's angle of entry. This total "bending angle" is determined by the structure of the lens.
Camera Lenses
Lenses in the Lens A camera lens is actually several lenses combined into one unit. A single converging lens could form a real image on the film, but it would be warped by a number of aberrations. One of the most significant warping factors is that different colors of light bend differently when moving through a lens. This chromatic aberration essentially produces an image where the colors are not lined up correctly. Cameras compensate for this using several lenses made of different materials. The lenses each handle colors differently, and when you combine them in a certain way, the colors are realigned. In a zoom lens, you can move different lens elements back and forth. By changing the distance between particular lenses, you can adjust the magnification power -- the focal length -- of the lens as a whole. |
A lens with a rounder shape (a center that extends out farther) will have a more acute bending angle. Basically, curving the lens out increases the distance between different points on the lens. This increases the amount of time that one part of the light wave is moving faster than another part, so the light makes a sharper turn.
Increasing the bending angle has an obvious effect. Light beams from a particular point will converge at a point closer to the lens. In a lens with a flatter shape, light beams will not turn as sharply. Consequently, the light beams will converge farther away from the lens. To put it another way, the focused real image forms farther away from the lens when the lens has a flatter surface.
Increasing the distance between the lens and the real image actually increases the total size of the real image. If you think about it, this makes perfect sense. Think of a projector: As you move the projector farther away from the screen, the image becomes larger. To put it simply, the light beams keep spreading apart as they travel toward the screen.
The same basic thing happens in a camera. As the distance between the lens and the real image increases, the light beams spread out more, forming a larger real image. But the size of the film stays constant. When you attach a very flat lens, it projects a large real image but the film is only exposed to the middle part of it. Basically, the lens zeroes in on the middle of the frame, magnifying a small section of the scene in front of you. A rounder lens produces a smaller real image, so the film surface sees a much wider area of the scene (at reduced magnification).
Professional cameras let you attach different lenses so you can see the scene at various magnifications. The magnification power of a lens is described by its focal length. In cameras, the focal length is defined as the distance between the lens and the real image of an object in the far distance (the moon for example). A higher focal length number indicates a greater image magnification.
A standard 50 mm lens doesn't significantly shrink or magnify the image. |
Cameras: Recording Light
What's in a Name? As it turns out, the term photography describes the photographic process quite accurately. Sir John Herschel, a 19th century astronomer and one of the first photographers, came up with the term in 1839. The term is a combination of two Greek words -- photos meaning light and graphein meaning writing (or drawing). The term camera comes from camera obscura, Latin for "dark room." The camera obscura was actually invented hundreds of years before photography. A traditional camera obscura was a dark room with light shining through a lens or tiny hole in the wall. Light passed through the hole, forming an upside-down real image on the opposite wall. This effect was very popular with artists, scientists and curious spectators. |
It does this with a collection of tiny light-sensitive grains, spread out in a chemical suspension on a strip of plastic. When exposed to light, the grains undergo a chemical reaction.
Once the roll is finished, the film is developed -- it is exposed to other chemicals, which react with the light-sensitive grains. In black and white film, the developer chemicals darken the grains that were exposed to light. This produces a negative, where lighter areas appear darker and darker areas appear lighter, which is then converted into a positive image in printing.
Color film has three different layers of light-sensitive materials, which respond, in turn, to red, green and blue. When the film is developed, these layers are exposed to chemicals that dye the layers of film. When you overlay the color information from all three layers, you get a full-color negative.
For an in-depth description of this entire process, check out How Photographic Film Works.
So far, we've looked at the basic idea of photography -- you create a real image with a converging lens, and you record the light pattern of this real image on a layer of light-sensitive material. Conceptually, this is all that's involved in taking a picture. But to capture a clear image, you have to carefully control how everything comes together.
Obviously, if you were to lay a piece of film on the ground and focus a real image onto it with a converging lens, you wouldn't get any kind of usable picture. Out in the open, every grain in the film would be completely exposed to light. And without any contrasting unexposed areas, there's no picture.
To capture an image, you have to keep the film in complete darkness until it's time to take the picture. Then, when you want to record an image, you let some light in. At its most basic level, this is all the body of a camera is -- a sealed box with a shutter that opens and closes between the lens and film. In fact, the term camera is shortened from camera obscura, literally "dark room" in Latin.
For the picture to come out right, you have to precisely control how much light hits the film. If you let too much light in, too many grains will react, and the picture will appear washed out. If you don't let enough light hit the film, too few grains will react, and the picture will be too dark. In the next section, we'll look at the different camera mechanisms that let you adjust the exposure.